Measurement and compensation of printer modulation transfer function
The capacity of a printing system to accurately reproduce details has an impact on the quality of printed images. The ability of a system to reproduce details is captured in its modulation transfer function (MTF). In the first part of this work, we compare three existing methods to measure the MTF o...
Gespeichert in:
Veröffentlicht in: | Journal of electronic imaging 2010-01, Vol.19 (1), p.011010-011010 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The capacity of a printing system to accurately reproduce details has an impact on the quality of printed images. The ability of a system to reproduce details is captured in its modulation transfer function (MTF). In the first part of this work, we compare three existing methods to measure the MTF of a printing system. After a thorough investigation, we select the method from Jang and Allebach and propose to modify it. We demonstrate that our proposed modification improves the measurement precision and the simplicity of implementation. Then we discuss the advantages and drawbacks of the different methods depending on the intended usage of the MTF and why Jang and Allebach's method best matches our needs. In the second part, we propose to improve the quality of printed images by compensating for the MTF of the printing system. The MTF is adaptively compensated in the Fourier domain, depending both on frequency and local mean values. Results of a category judgment experiment show significant improvement as the printed MTF-compensated images obtain the best scores. |
---|---|
ISSN: | 1017-9909 1560-229X |
DOI: | 10.1117/1.3272958 |