CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model

High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT ® package. The local t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2010-02, Vol.30 (2), p.152-166
Hauptverfasser: Ashwin, T.R., Narasimham, G.S.V.L., Jacob, Subhash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 2
container_start_page 152
container_title Applied thermal engineering
container_volume 30
creator Ashwin, T.R.
Narasimham, G.S.V.L.
Jacob, Subhash
description High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT ® package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tube refrigerator.
doi_str_mv 10.1016/j.applthermaleng.2009.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889396210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431109002427</els_id><sourcerecordid>889396210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-1975c3d1c54ccedfaef4d33bddf3fc43d92422df6ab32e09de6755b5214e389b3</originalsourceid><addsrcrecordid>eNqNkMuO0zAUhrMAiWGGd_ACxCoZ35I0EhtUKIM0EhtmbTn2cXsqxw52Aqrm5XHVCondrM7mP__lq6r3jDaMsu7-2Oh59ssB0qQ9hH3DKR0a2jeUta-qGybaoZaCsTfV25yPlDK-6eVN9bzdfSE6aH_KmEl05ID7A3EJfq0QzIlMGFAvawIyrz4DWdYRSAKXcA9JLzFl4mIiedYGyLkBGr1gDJn8weVArn1IiKEuluhxTLhOZIoW_F312uli-u56b6un3def24f68ce379vPj7WRsltqNvStEZaZVhoD1mlw0goxWuuEM1LYgUvOrev0KDjQwULXt-3YciZBbIZR3FYfL75zimVWXtSE2YD3OkBcs9psBjF0nNGi_HRRmhRzLjPVnHDS6aQYVWfM6qj-x6zOmBXtVcFc3j9cg3Q22rukg8H8z4Nz2ckSVXS7iw7K6t8ISWWDBTdYTGAWZSO-LPAvquGiXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889396210</pqid></control><display><type>article</type><title>CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ashwin, T.R. ; Narasimham, G.S.V.L. ; Jacob, Subhash</creator><creatorcontrib>Ashwin, T.R. ; Narasimham, G.S.V.L. ; Jacob, Subhash</creatorcontrib><description>High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT ® package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tube refrigerator.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2009.07.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cryocoolers ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; High frequencies ; Inertance tube ; Mathematical models ; Miniature ; Oscillatory flow ; Pulse tube ; Pulse tubes ; Refrigerators ; Regenerator ; Space applications ; Theoretical studies. Data and constants. Metering ; Thermal engineering ; Walls</subject><ispartof>Applied thermal engineering, 2010-02, Vol.30 (2), p.152-166</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-1975c3d1c54ccedfaef4d33bddf3fc43d92422df6ab32e09de6755b5214e389b3</citedby><cites>FETCH-LOGICAL-c446t-1975c3d1c54ccedfaef4d33bddf3fc43d92422df6ab32e09de6755b5214e389b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2009.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22464939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashwin, T.R.</creatorcontrib><creatorcontrib>Narasimham, G.S.V.L.</creatorcontrib><creatorcontrib>Jacob, Subhash</creatorcontrib><title>CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model</title><title>Applied thermal engineering</title><description>High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT ® package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tube refrigerator.</description><subject>Applied sciences</subject><subject>Cryocoolers</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>High frequencies</subject><subject>Inertance tube</subject><subject>Mathematical models</subject><subject>Miniature</subject><subject>Oscillatory flow</subject><subject>Pulse tube</subject><subject>Pulse tubes</subject><subject>Refrigerators</subject><subject>Regenerator</subject><subject>Space applications</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal engineering</subject><subject>Walls</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkMuO0zAUhrMAiWGGd_ACxCoZ35I0EhtUKIM0EhtmbTn2cXsqxw52Aqrm5XHVCondrM7mP__lq6r3jDaMsu7-2Oh59ssB0qQ9hH3DKR0a2jeUta-qGybaoZaCsTfV25yPlDK-6eVN9bzdfSE6aH_KmEl05ID7A3EJfq0QzIlMGFAvawIyrz4DWdYRSAKXcA9JLzFl4mIiedYGyLkBGr1gDJn8weVArn1IiKEuluhxTLhOZIoW_F312uli-u56b6un3def24f68ce379vPj7WRsltqNvStEZaZVhoD1mlw0goxWuuEM1LYgUvOrev0KDjQwULXt-3YciZBbIZR3FYfL75zimVWXtSE2YD3OkBcs9psBjF0nNGi_HRRmhRzLjPVnHDS6aQYVWfM6qj-x6zOmBXtVcFc3j9cg3Q22rukg8H8z4Nz2ckSVXS7iw7K6t8ISWWDBTdYTGAWZSO-LPAvquGiXg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Ashwin, T.R.</creator><creator>Narasimham, G.S.V.L.</creator><creator>Jacob, Subhash</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100201</creationdate><title>CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model</title><author>Ashwin, T.R. ; Narasimham, G.S.V.L. ; Jacob, Subhash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-1975c3d1c54ccedfaef4d33bddf3fc43d92422df6ab32e09de6755b5214e389b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Cryocoolers</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>High frequencies</topic><topic>Inertance tube</topic><topic>Mathematical models</topic><topic>Miniature</topic><topic>Oscillatory flow</topic><topic>Pulse tube</topic><topic>Pulse tubes</topic><topic>Refrigerators</topic><topic>Regenerator</topic><topic>Space applications</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal engineering</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashwin, T.R.</creatorcontrib><creatorcontrib>Narasimham, G.S.V.L.</creatorcontrib><creatorcontrib>Jacob, Subhash</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashwin, T.R.</au><au>Narasimham, G.S.V.L.</au><au>Jacob, Subhash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model</atitle><jtitle>Applied thermal engineering</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>30</volume><issue>2</issue><spage>152</spage><epage>166</epage><pages>152-166</pages><issn>1359-4311</issn><abstract>High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT ® package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tube refrigerator.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2009.07.015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2010-02, Vol.30 (2), p.152-166
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_889396210
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cryocoolers
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
High frequencies
Inertance tube
Mathematical models
Miniature
Oscillatory flow
Pulse tube
Pulse tubes
Refrigerators
Regenerator
Space applications
Theoretical studies. Data and constants. Metering
Thermal engineering
Walls
title CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20analysis%20of%20high%20frequency%20miniature%20pulse%20tube%20refrigerators%20for%20space%20applications%20with%20thermal%20non-equilibrium%20model&rft.jtitle=Applied%20thermal%20engineering&rft.au=Ashwin,%20T.R.&rft.date=2010-02-01&rft.volume=30&rft.issue=2&rft.spage=152&rft.epage=166&rft.pages=152-166&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2009.07.015&rft_dat=%3Cproquest_cross%3E889396210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889396210&rft_id=info:pmid/&rft_els_id=S1359431109002427&rfr_iscdi=true