Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation

This paper deals with the problem of estimating the parameters for fractional Ornstein–Uhlenbeck processes from discrete observations when the Hurst parameter H is known. Both the drift and the diffusion coefficient estimators of discrete form are obtained based on approximating integrals via Rieman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2011-09, Vol.35 (9), p.4196-4207
Hauptverfasser: Xiao, Weilin, Zhang, Weiguo, Xu, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the problem of estimating the parameters for fractional Ornstein–Uhlenbeck processes from discrete observations when the Hurst parameter H is known. Both the drift and the diffusion coefficient estimators of discrete form are obtained based on approximating integrals via Riemann sums with Hurst parameter H ∈ (1/2, 3/4). By adapting the stochastic integral representation to the fractional Brownian motion, these two estimators can be efficiently computed by the use of computer software. Numerical examples are presented to examine the performance of our method. An application to real data is also presented to show how to apply this method in practice.
ISSN:0307-904X
DOI:10.1016/j.apm.2011.02.047