A multivariable MRAC scheme with application to a nonlinear aircraft model
This paper revisits the multivariable model reference adaptive control (MRAC) problem, by studying adaptive state feedback control for output tracking of multi-input multi-output (MIMO) systems. With such a control scheme, the plant-model matching conditions are much less restrictive than those for...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2011-04, Vol.47 (4), p.804-812 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper revisits the multivariable model reference adaptive control (MRAC) problem, by studying adaptive state feedback control for output tracking of multi-input multi-output (MIMO) systems. With such a control scheme, the plant-model matching conditions are much less restrictive than those for state tracking, while the controller has a simpler structure than that of an output feedback design. Such a control scheme is useful when the plant-model matching conditions for state tracking cannot be satisfied. A stable adaptive control scheme is developed based on LDS decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. A simulation study of a linearized lateral-directional dynamics model of a realistic nonlinear aircraft system model is conducted to demonstrate the scheme. This linear design based MRAC scheme is subsequently applied to a nonlinear aircraft system, and the results indicate that this linearization-based adaptive scheme can provide acceptable system performance for the nonlinear systems in a neighborhood of an operating point. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2011.01.069 |