Improved deterministic algorithms for weighted matching and packing problems
Based on the method of (n,k)-universal sets, we present a deterministic parameterized algorithm for the weighted rd-matching problem with time complexity O∗(4(r−1)k+o(k)), improving the previous best upper bound O∗(4rk+o(k)). In particular, the algorithm applied to the unweighted 3d-matching problem...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2011-05, Vol.412 (23), p.2503-2512 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the method of (n,k)-universal sets, we present a deterministic parameterized algorithm for the weighted rd-matching problem with time complexity O∗(4(r−1)k+o(k)), improving the previous best upper bound O∗(4rk+o(k)). In particular, the algorithm applied to the unweighted 3d-matching problem results in a deterministic algorithm with time O∗(16k+o(k)), improving the previous best result O∗(21.26k). For the weighted r-set packing problem, we present a deterministic parameterized algorithm with time complexity O∗(2(2r−1)k+o(k)), improving the previous best result O∗(22rk+o(k)). The algorithm, when applied to the unweighted 3-set packing problem, has running time O∗(32k+o(k)), improving the previous best result O∗(43.62k+o(k)). Moreover, for the weighted r-set packing and weighted rd-matching problems, we give a kernel of size O(kr), which is the first kernelization algorithm for the problems on weighted versions. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2010.10.042 |