Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars

This research studies the influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP bars. The experimental program included seven beams. The tested beams were divided into four groups. Each of the first three groups consisted of two beams one of normal strength an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2011-05, Vol.33 (5), p.1754-1763
Hauptverfasser: Issa, Mohamed S., Metwally, Ibrahim M., Elzeiny, Sherif M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research studies the influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP bars. The experimental program included seven beams. The tested beams were divided into four groups. Each of the first three groups consisted of two beams one of normal strength and the other of high strength while the fourth group consisted of one normal strength beam. The first group is the reference group which had no internal fibers. The second group studied the effect of using internal polypropylene fibers in the concrete mix. The third group studied the effect of using internal glass fibers in the concrete mix while the fourth group studied the effect of using internal steel fibers in the concrete mix. The experimental results of tests showed that using GFRP as the main reinforcement for the concrete beams achieves reasonable flexural strength. Also the theoretical results calculated using ACI 440 code showed good agreement with the experimental results with an error of about 20%. The results of the current research indicated that all types of the fibers used improved the ductility of FRP- reinforced concrete beams. It was found that the span-to-experimental service load deflection ratio is relatively high when compared to the usually accepted ratio of about span/250.
ISSN:0141-0296
1873-7323
DOI:10.1016/j.engstruct.2011.02.014