Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression
The results of 12 multi-axial compression tests performed on cylinders made of self-consolidating concrete, plain (SCC) and reinforced with steel fibers (FR-SCC), are presented in this paper. In the experimental campaign, four “reference” confining pressures (0, 1, 3 and 10 MPa) were applied on the...
Gespeichert in:
Veröffentlicht in: | Cement & concrete composites 2011-04, Vol.33 (4), p.520-527 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The results of 12 multi-axial compression tests performed on cylinders made of self-consolidating concrete, plain (SCC) and reinforced with steel fibers (FR-SCC), are presented in this paper. In the experimental campaign, four “reference” confining pressures (0, 1, 3 and 10
MPa) were applied on the lateral surface of the specimens. After the first stage of loading, when a hydraulic stress was applied to the cylinders, and progressively increased up to the value of a pre-established confining pressure, a longitudinal compressive load was used to generate crushing of concrete. During this failure, the post-peak behavior of SCC and FR-SCC can be defined by a non-dimensional function that relates the inelastic displacement and the relative stress during softening. Such a function also reveals the ductility of SCC, which increases with the confinement stress and with the fiber volume fraction. In particular, by adding 0.9% in volume of steel fibers, FR-SCC can show practically the same ductility measured in unreinforced SCC with 1
MPa of confining pressure. Thus, the presence of an adequate amount of fibers in SCC columns is sufficient to create a sort of distributed confinement. |
---|---|
ISSN: | 0958-9465 1873-393X |
DOI: | 10.1016/j.cemconcomp.2011.02.007 |