Conflict-free navigation in unknown urban environments

This paper presents an autonomous exploration method in an unknown environment that uses model predictive control (MPC)-based obstacle avoidance with local map building by onboard sensing. An onboard laser scanner is used to build an online map of obstacles around the vehicle with outstanding accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics & automation magazine 2006-09, Vol.13 (3), p.27-33
Hauptverfasser: Shim, D.H., Hoam Chung, Sastry, S.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an autonomous exploration method in an unknown environment that uses model predictive control (MPC)-based obstacle avoidance with local map building by onboard sensing. An onboard laser scanner is used to build an online map of obstacles around the vehicle with outstanding accuracy. This local map is combined with a real-time MPC algorithm that generates a safe vehicle path, using a cost function that penalizes the proximity to the nearest obstacle. The adjusted trajectory is then sent to a position tracking layer in the hierarchical unmanned aerial vehicle (UAV) avionics architecture. In a series of experiments using a Berkeley UAV, the proposed approach successfully guided the vehicle safely through the urban canyon
ISSN:1070-9932
1558-223X
DOI:10.1109/MRA.2006.1678136