Ultrasound simulation in bone

The manner in which ultrasound interacts with bone is of key interest in therapy and diagnosis alike. These may include applications directly to bone, as, for example, in treatment to accelerate the healing of bone fractures and in assessment of bone density in osteoporosis, or indirectly in diagnos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2008-06, Vol.55 (6), p.1205-1218
Hauptverfasser: Kaufman, J.J., Gangming Luo, Siffert, R.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The manner in which ultrasound interacts with bone is of key interest in therapy and diagnosis alike. These may include applications directly to bone, as, for example, in treatment to accelerate the healing of bone fractures and in assessment of bone density in osteoporosis, or indirectly in diagnostic imaging of soft tissue with interest in assessing exposure levels to nearby bone. Because of the lack of analytic solutions to virtually every "practical problem" encountered clinically, ultrasound simulation has become a widely used technique for evaluating ultrasound interactions in bone. This paper provides an overview of the use of ultrasound simulation in bone. A brief description of the mathematical model used to characterize ultrasound propagation in bone is first provided. A number of simulation examples are then presented that explain how simulation may be utilized in a variety of practical configurations. The focus of this paper in terms of examples presented is on diagnostic applications in bone, and, in particular, for assessment of osteoporosis. However, the use of simulation in other areas of interest can easily be extrapolated from the examples presented. In conclusion, this paper describes the use of ultrasound simulation in bone and demonstrates the power of computational methods for ultrasound research in general and tissue and bone applications in particular.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2008.784