Linear Regression With a Sparse Parameter Vector

We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive the minimum mean-square error (MMSE) estimate of the parameter vector and a computationally efficient approximation of it. We also derive an empirical-Bayesian version...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-02, Vol.55 (2), p.451-460
Hauptverfasser: Larsson, E.G., Selen, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive the minimum mean-square error (MMSE) estimate of the parameter vector and a computationally efficient approximation of it. We also derive an empirical-Bayesian version of the estimator, which does not need any a priori information, nor does it need the selection of any user parameters. As a byproduct, we obtain a powerful model ("basis") selection tool for sparse models. The performance and robustness of our new estimators are illustrated via numerical examples
ISSN:1053-587X
1941-0476
1941-0476
DOI:10.1109/TSP.2006.887109