Linear Regression With a Sparse Parameter Vector
We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive the minimum mean-square error (MMSE) estimate of the parameter vector and a computationally efficient approximation of it. We also derive an empirical-Bayesian version...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2007-02, Vol.55 (2), p.451-460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive the minimum mean-square error (MMSE) estimate of the parameter vector and a computationally efficient approximation of it. We also derive an empirical-Bayesian version of the estimator, which does not need any a priori information, nor does it need the selection of any user parameters. As a byproduct, we obtain a powerful model ("basis") selection tool for sparse models. The performance and robustness of our new estimators are illustrated via numerical examples |
---|---|
ISSN: | 1053-587X 1941-0476 1941-0476 |
DOI: | 10.1109/TSP.2006.887109 |