Detection of the Number of Signals Using the Benjamini-Hochberg Procedure

This paper presents a novel approach to detect multiple signals embedded in noisy observations from a sensor array. We formulate the detection problem as a multiple hypothesis test. To control the global level of the multiple test, we apply the false discovery rate (FDR) criterion proposed by Benjam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-06, Vol.55 (6), p.2497-2508
Hauptverfasser: Pei-Jung Chung, Bohme, J.F., Mecklenbrauker, C.F., Hero, A.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel approach to detect multiple signals embedded in noisy observations from a sensor array. We formulate the detection problem as a multiple hypothesis test. To control the global level of the multiple test, we apply the false discovery rate (FDR) criterion proposed by Benjamini and Hochberg. Compared to the classical familywise error rate (FWE) criterion, the FDR-controling procedure leads to a significant gain in power for large size problems. In addition, we apply the bootstrap technique to estimate the observed significance level required by the FDR-controling procedure. Simulations show that the FDR-controling procedure always provides higher probability of correct detection than the FWE-controling procedure. Furthermore, the reliability of the proposed test procedure is not affected by the gain in power of the test
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.893749