Pinworm and TNKS inhibitors, an eccentric duo to derail the oncogenic WNT pathway

Summary The WNT/β-catenin pathway underlies many human cancers through mutations in the APC, β-catenin, and Axin genes. Activation of WNT signalling can also occur due to the localization of glycogen synthase kinase 3β(GSK3β) to the multivesicular bodies, which prevents the degradation of β-catenin....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinics and research in hepatology and gastroenterology 2011-09, Vol.35 (8), p.534-538
Hauptverfasser: Ouelaa-Benslama, Radia, Emami, Shahin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The WNT/β-catenin pathway underlies many human cancers through mutations in the APC, β-catenin, and Axin genes. Activation of WNT signalling can also occur due to the localization of glycogen synthase kinase 3β(GSK3β) to the multivesicular bodies, which prevents the degradation of β-catenin. This leads to accumulation of β-catenin within the cytoplasmic matrix and nucleus of cancer cells, which triggers the transactivation of genes involved in cell proliferation, including various oncogenes. Recent research into the mechanistic regulations of molecule homeostasis and identification of new small-targeted inhibitors has provided further insights into the WNT signalling pathway and its role in human cancers. Novel WNT inhibitors target unsuspected cellular enzymes, such as tankyrases, or casein kinase 1α/γ, which controls the destruction of β-catenin and GSK3β. These could lead to the identification of new biomarkers and WNT-targeted inhibitors for the treatment of cancer.
ISSN:2210-7401
2210-741X
DOI:10.1016/j.clinre.2011.03.015