Characterizing the Dynamics and Ligand-Specific Interactions in the Human Leukocyte Elastase through Molecular Dynamics Simulations
The human leukocyte elastase (HLE), a neutrophil serine protease of the chymotrypsin superfamily, is a major therapeutic target for a number of inflammatory diseases, such as chronic obstructive pulmonary disease (COPD). In this work, we present a comparative explicit water molecular dynamics (MD) s...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2011-07, Vol.51 (7), p.1690-1702 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human leukocyte elastase (HLE), a neutrophil serine protease of the chymotrypsin superfamily, is a major therapeutic target for a number of inflammatory diseases, such as chronic obstructive pulmonary disease (COPD). In this work, we present a comparative explicit water molecular dynamics (MD) study on the free and inhibitor-bound HLE. Knowledge of the flexibility and conformational changes induced by this irreversible inhibitor, whether in a prebound stage or covalently bound at the enzyme binding site, encases fundamental biological interest and is particularly relevant to ongoing structure-based drug design studies. Our results suggest that HLE operates by an induced-fit mechanism with direct intervention of a surface loop which is open toward the solvent in the free enzyme and closed while in the presence of the ligand. MM-PBSA free energy calculations furthermore elucidate the energetic contributions to the distinct conformations adopted by this loop. Additionally, a survey of the major contributions to the inhibitor binding free energies was attained. Our findings enforce the need to account for HLE flexibility, whether through the use of MD-generated ensembles of HLE conformations as targets for molecular docking or via sophisticated flexible-docking algorithms. We anticipate that inclusion of the observed HLE dynamic behavior into future drug design methodologies will have a relevant impact in the development of novel, more efficient, inhibitors. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/ci200076k |