Charge state dependent energy deposition by ion impact

We report on a measurement of craters in thin dielectric films formed by Xe(Q+) (26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers were used to amplify the effect of charge-dependent cratering through the exponential dependence of tunneling conductance on barrier thickne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-08, Vol.107 (6), p.063202-063202, Article 063202
Hauptverfasser: Lake, R E, Pomeroy, J M, Grube, H, Sosolik, C E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on a measurement of craters in thin dielectric films formed by Xe(Q+) (26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers were used to amplify the effect of charge-dependent cratering through the exponential dependence of tunneling conductance on barrier thickness. Electrical conductance of a crater σ(c)(Q) increased by 4 orders of magnitude (7.9 × 10(-4) μS to 6.1 μS) as Q increased, corresponding to crater depths ranging from 2 to 11 Å. By employing a heated spike model, we determine that the energy required to produce the craters spans from 8 to 25 keV over the investigated charge states. Considering energy from preequilibrium nuclear and electronic stopping as well as neutralization, we find that at least (27 ± 2)% of available projectile neutralization energy is deposited into the thin film during impact.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.107.063202