Equilibrium Uptake and Bioaccumulation of Basic Violet 14 Using Submerged Macrophyte Hydrilla verticillata
The percentage removal and uptake capacity of Basic Violet 14 using Hydrilla verticillata with living biomass was studied under batch conditions. The survival of H. verticillata was studied using the chlorophyll content in the living biomass. Bioaccumulation of Basic Violet 14 using H. verticillata...
Gespeichert in:
Veröffentlicht in: | Clean : soil, air, water air, water, 2011-03, Vol.39 (3), p.283-288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The percentage removal and uptake capacity of Basic Violet 14 using Hydrilla verticillata with living biomass was studied under batch conditions. The survival of H. verticillata was studied using the chlorophyll content in the living biomass. Bioaccumulation of Basic Violet 14 using H. verticillata was tested by varying the wet sorbent dosage (0.5–2.5 g), initial pH (3–8), and initial dye concentrations (5–25 mg L−1). The results show that the plant was effectively accumulating the Basic Violet 14 dye. The uptake capacity of Basic Violet 14 dye was observed as 5.9 and 21.3 mg g−1 at the initial dye concentration of 5 and 25 mg L−1, respectively, for a biomass of 5 g L−1 (wet weight) at pH 7.0 for 144 h. In general, the plant growth was found to be normal at lower concentrations and showed higher removal efficiency. It was also observed that removal efficiency of H. verticillata was found to decrease with increase in initial dye concentration. The biomass sample surface was analyzed using SEM imaging and functional groups present in the biomass were analyzed using FTIR. The equilibrium uptake capacity was analyzed by Langmuir and Freundlich isotherms. The equilibrium data was found to be fit well to both Langmuir and Freundlich isotherm models with higher coefficient of determination.
The results indicate that H. verticillata could be used for industrial waste water management and chlorophyll as a biosensor to monitor high levels of dye toxicity. |
---|---|
ISSN: | 1863-0650 1863-0669 1863-0669 |
DOI: | 10.1002/clen.201000186 |