Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: Possible relevance to its antidepressant mechanism

There is abundant evidence suggesting the relevance of glutamate to depression and antidepressant mechanisms. Curcumin, a major active compound of Curcuma longa, has been reported to have the biological function of antidepressant. The aim of the present study was to investigate the effect of curcumi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neuro-psychopharmacology & biological psychiatry 2011-08, Vol.35 (7), p.1785-1793
Hauptverfasser: Lin, Tzu Yu, Lu, Cheng Wei, Wang, Chia-Chuan, Wang, Ying-Chou, Wang, Su-Jane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is abundant evidence suggesting the relevance of glutamate to depression and antidepressant mechanisms. Curcumin, a major active compound of Curcuma longa, has been reported to have the biological function of antidepressant. The aim of the present study was to investigate the effect of curcumin on endogenous glutamate release in nerve terminals of rat prefrontal cortex and the underlying mechanisms. The results showed that curcumin inhibited the release of glutamate that was evoked by exposing synaptosomes to the K+ channel blocker 4-aminopyridine (4-AP). This phenomenon was blocked by the chelating the extracellular Ca2+ ions, and by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-β-benzyl-oxyaspartate (DL-TBOA). Further experiments demonstrated that curcumin decreased depolarization-induced increase in [Ca2+]C, whereas it did not alter the resting membrane potential or 4-AP-mediated depolarization. Furthermore, the inhibitory effect of curcumin on evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca2+ release or Na+/Ca2+ exchange. These results suggest that curcumin inhibits evoked glutamate release from rat prefrontocortical synaptosomes by the suppression of presynaptic Cav2.2 and Cav2.1 channels. Additionally, we also found that the inhibitory effect of curcumin on 4-AP-evoked glutamate release was completely abolished by the clinically effective antidepressant fluoxetine. This suggests that curcumin and fluoxetine use a common intracellular mechanism to inhibit glutamate release from rat prefrontal cortex nerve terminals. ► Curcumin inhibited glutamate release from rat prefrontocortical synaptosomes. ► A decrease in the Ca2+ influx through Cav2.2 and Cav2.1 channels was involved. ► Curcumin-mediated inhibition of glutamate release was occluded by fluoxetine. ► This study provided further understanding of the mode of curcumin action in the brain.
ISSN:0278-5846
1878-4216
DOI:10.1016/j.pnpbp.2011.06.012