Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses

This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2009-11, Vol.91B (2), p.662-668
Hauptverfasser: Read, Michael L., Morgan, Philip B., Maldonado-Codina, Carole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work sought to undertake a comprehensive investigation of the measurement errors associated with contact angle assessment of curved hydrogel contact lens surfaces. The contact angle coefficient of repeatability (COR) associated with three measurement conditions (image analysis COR, intralens COR, and interlens COR) was determined by measuring the contact angles (using both sessile drop and captive bubble methods) for three silicone hydrogel lenses (senofilcon A, balafilcon A, lotrafilcon A) and one conventional hydrogel lens (etafilcon A). Image analysis COR values were about 2°, whereas intralens COR values (95% confidence intervals) ranged from 4.0° (3.3°, 4.7°) (lotrafilcon A, captive bubble) to 10.2° (8.4°, 12.1°) (senofilcon A, sessile drop). Interlens COR values ranged from 4.5° (3.7°, 5.2°) (lotrafilcon A, captive bubble) to 16.5° (13.6°, 19.4°) (senofilcon A, sessile drop). Measurement error associated with image analysis was shown to be small as an absolute measure, although proportionally more significant for lenses with low contact angle. Sessile drop contact angles were typically less repeatable than captive bubble contact angles. For sessile drop measures, repeatability was poorer with the silicone hydrogel lenses when compared with the conventional hydrogel lens; this phenomenon was not observed for the captive bubble method, suggesting that methodological factors related to the sessile drop technique (such as surface dehydration and blotting) may play a role in the increased variability of contact angle measurements observed with silicone hydrogel contact lenses. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009
ISSN:1552-4973
1552-4981
1552-4981
DOI:10.1002/jbm.b.31442