Determination of Partition Coefficients for Selected PAHs between Water and Dissolved Organic Matter

The fate and transport of highly hydrophobic chemicals are affected by the partitioning between water and dissolved organic carbon. Large variation in the partition coefficient (KDOCw) is often found, due to the selection of model organic matter or potential experimental artifacts. To investigate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clean : soil, air, water air, water, 2010-09, Vol.38 (9), p.797-802
Hauptverfasser: Kim, Su-Jin, Kwon, Jung-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fate and transport of highly hydrophobic chemicals are affected by the partitioning between water and dissolved organic carbon. Large variation in the partition coefficient (KDOCw) is often found, due to the selection of model organic matter or potential experimental artifacts. To investigate the roles of the type of organic matter on the partitioning of highly hydrophobic compounds, the partition coefficients of eight selected polycyclic aromatic hydrocarbons (PAHs), with 3–6 aromatic rings, were determined using a passive dosing/extraction method between water and model dissolved organic matter (humic acid, fulvic acid, sodium dodecyl sulfate micelle (SDS), and 2‐hydroxypropyl‐β‐cyclodextrin). Although the KDOCw values for 3–4 ring PAHs in this study were close to those reported in the literature, experimental KDOCw values between Aldrich humic acid (AHA) and water were higher than values reported in the literature for 5–6 ring PAHs. The KDOCw values were highest for AHA, followed by SDS and Suwannee river fulvic acid (SFA). The slopes of the linear regression between log KDOCw and log Kow were 1.23 (± 0.13), 0.82 (± 0.09), and 0.59 (± 0.13) for AHA, SDS, and SFA, respectively. The differences in the KDOCw values between AHA and the other organic matter (SDS, SFA, and CD) increased with increasing hydrophobicity of the PAHs, showing that the sorption of highly hydrophobic chemicals to the humic acid fraction may be important in the presence of mixed organic matter. A solid‐phase dosing/extraction method was applied to obtain partition coefficients. Different polycyclic aromatic hydrocarbons with 3–6 aromatic rings were determined.
ISSN:1863-0650
1863-0669
1863-0669
DOI:10.1002/clen.201000113