Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: Taking a sequencing batch reactor as an example
In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen dema...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2011-06, Vol.108 (6), p.1260-1267 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen demand (COD) removal. The membrane‐less biocathode MFC is integrated with the SBR to recover energy from the aeration in the form of electricity and thus reduce the SBR operation costs. In a lab‐scale integrated SBR‐MFC system, the maximum power production of the MFC was 2.34 W/m3 for one typical cycle and the current density reached up to 14 A/m3. As a result, the MFC contributed to the 18.7% COD consumption of the integrated system and also recovered energy from the aeration tank with a volume fraction of only 12% of the SBR. Our strategy provides a feasible and effective energy‐saving and ‐recovering solution to upgrade the existing activated sludge processes. Biotechnol. Bioeng. 2011; 108:1260–1267. © 2011 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0006-3592 1097-0290 1097-0290 |
DOI: | 10.1002/bit.23056 |