A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance
Abstract A type of pH-responsive nano multi-drug delivery systems (nano-MDDSs) with uniform particle size (100 ± 13 nm) and excellent monodispersity was developed by in situ co-self-assembly among water-insoluble anti-cancer drug (doxorubicin, DOX), surfactant micelles (CTAB) as chemosensitiver and...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-10, Vol.32 (30), p.7711-7720 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract A type of pH-responsive nano multi-drug delivery systems (nano-MDDSs) with uniform particle size (100 ± 13 nm) and excellent monodispersity was developed by in situ co-self-assembly among water-insoluble anti-cancer drug (doxorubicin, DOX), surfactant micelles (CTAB) as chemosensitiver and silicon species forming drugs/surfactant micelles-co-loaded mesoporous silica nanoparticles (drugs@micelles@MSNs or DOX@CTAB@MSNs) via a micelles–MSNs self-assembly mechanism. The nano-MDDS DOX@CTAB@MSNs had a highly precise pH-responsive drug release behavior both in vitro and in vivo , and exhibited high drug efficiencies against drug-resistant MCF-7/ADR cells as well as drug-sensitive MCF-7 cells by the MSNs-mediated transmembrane delivery, the sustained drug release and the high anti-cancer and multi-drug resistance (MDR)-overcoming efficiencies. The MDR-overcoming mechanism was proved to be a synergistic cell cycle arrest/apoptosis-inducing effect resulted from the chemosensitization of the surfactant CTAB. These results demonstrated a very promising nano-MDDS for the pH-responsive controlled drug release and the cancer MDR overcoming. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2011.06.066 |