Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia

The present study examined the effects of human umbilical cord blood‐derived mesenchymal stem cells (HUCB‐derived MSCs) delivered through the basilar artery in a canine thromboembolic brain ischemia model. Cerebral ischemia was induced through occlusion of the middle cerebral artery by injecting thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2009-12, Vol.87 (16), p.3554-3567
Hauptverfasser: Chung, Dai-Jung, Choi, Chi-Bong, Lee, Sung-Ho, Kang, Eun-Hee, Lee, Jae-Hoon, Hwang, Soo-Han, Han, Hoon, Lee, Jong-Hwan, Choe, Bo-Young, Lee, Soo-Yeol, Kim, Hwi-Yool
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study examined the effects of human umbilical cord blood‐derived mesenchymal stem cells (HUCB‐derived MSCs) delivered through the basilar artery in a canine thromboembolic brain ischemia model. Cerebral ischemia was induced through occlusion of the middle cerebral artery by injecting thrombus emboli into 10 beagles. In the HUCBC group (n = 5), 1 × 106 HUCB‐derived MSCs were transplanted through the basilar artery 1 day after ischemic induction using an endovascular interventional approach. In the control group (n = 5), phosphate‐buffered saline (PBS) was injected in the same manner in as the HUCBC group. Upon neurobehavioral examination, earlier recovery was observed in the HUCBC group. The HUCBC group showed a decrease in the infarction volume at 1 week after cerebral ischemic induction, whereas the control group showed an increase in the infarction volume at 1 week, by magnetic resonance image analysis. Transplanted cells had differentiated into neurons and astrocytes and were observed in and around endothelial cells that were positive for von Willebrand factor (vWF). HUCB‐derived MSCs expressed neuroprotective factors, such as brain‐derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), at 4 weeks after the transplantation. The transplanted cells demonstrated their efficacy by reducing the infarction lesion volume and through earlier recovery from the neurological deficit. These results suggest that intraarterial transplantation of HUCB‐derived MSCs could be useful in clinical treatment of cerebral ischemia. © 2009 Wiley‐Liss, Inc.
ISSN:0360-4012
1097-4547
1097-4547
DOI:10.1002/jnr.22162