Toward Synergy-Based Brain-Machine Interfaces

This paper demonstrates a synergy-based brain-machine interface that uses low-dimensional command signals to control a high dimensional virtual hand. First, temporal postural synergies were extracted from the angular velocities of finger joints of five healthy subjects when they performed hand movem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2011-09, Vol.15 (5), p.726-736
Hauptverfasser: Vinjamuri, R., Weber, D. J., Zhi-Hong Mao, Collinger, J. L., Degenhart, A. D., Kelly, J. W., Boninger, M. L., Tyler-Kabara, E. C., Wei Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper demonstrates a synergy-based brain-machine interface that uses low-dimensional command signals to control a high dimensional virtual hand. First, temporal postural synergies were extracted from the angular velocities of finger joints of five healthy subjects when they performed hand movements that were similar to activities of daily living. Two synergies inspired from the extracted synergies, namely, two-finger pinch and whole-hand grasp, were used in real-time brain control, where a virtual hand with 10 degrees of freedom was controlled to grasp or pinch virtual objects. These two synergies were controlled by electrocorticographic (ECoG) signals recorded from two electrodes of an electrode array that spanned motor and speech areas of an individual with intractable epilepsy, thus demonstrating closed loop control of a synergy-based brain-machine interface.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2011.2160272