Genetic variation, population structure, and linkage disequilibrium in European elite germplasm of perennial ryegrass
Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent...
Gespeichert in:
Veröffentlicht in: | Plant science (Limerick) 2011-10, Vol.181 (4), p.412-420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent of linkage disequilibrium (LD) within European elite germplasm and to evaluate the appropriate methodology for genetic association mapping in perennial ryegrass. A high level of genetic diversity was observed in a set of 380 perennial ryegrass elite genotypes when genotyped with 40 SSRs and 2 STS markers. A Bayesian structure analysis identified two subpopulations, which were confirmed by principal coordinate analysis (PCoA). One subpopulation consisted mainly of genotypes originating from the UK, while germplasm mostly from Continental Europe was grouped into the second subpopulation. LD (r2) decay was rapid and occurred within 0.4cM across European varieties, when population structure was taken into consideration. However, an extended LD of up to 6.6cM was detected within the variety Aberdart. High genetic diversity and rapid LD decay provide means for high resolution association mapping in elite materials of perennial ryegrass. However, different strategies need to be applied depending on the material used. Genome-wide association study (GWAS) with several hundred markers can be applied within synthetic varieties to identify large (up to 10cM) genomic regions affecting trait variation. A combination of available and novel DNA markers is needed to achieve resolution required for GWAS in elite breeding materials. An even higher marker density of several million SNPs might be needed for GWAS in diverse ecotype collections, potentially resulting in quantitative trait polymorphism (QTP) identification. |
---|---|
ISSN: | 0168-9452 1873-2259 |
DOI: | 10.1016/j.plantsci.2011.06.013 |