Hypothesis/review: The structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis

Human perception of sweetness, behind the felt pleasure, is thought to play a role as an indicator of energy density of foods. For humans, only a small number of plant proteins taste sweet. As non-caloric sweeteners, these plant proteins have attracted attention as candidates for the control of obes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant science (Limerick) 2011-10, Vol.181 (4), p.347-354
Hauptverfasser: Wintjens, René, Viet, Tran Melody Vu Ngoc, Mbosso, Emmanuel, Huet, Joëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human perception of sweetness, behind the felt pleasure, is thought to play a role as an indicator of energy density of foods. For humans, only a small number of plant proteins taste sweet. As non-caloric sweeteners, these plant proteins have attracted attention as candidates for the control of obesity, oral health and diabetic management. Significant advances have been made in the characterization of the sweet-tasting plant proteins, as well as their binding interactions with the appropriate receptors. The elucidation of sweet-taste receptor gene sequences represents an important step towards the understanding of sweet taste perception. However, many questions on the molecular basis of sweet-taste elicitation by plant proteins remain unanswered. In particular, why homologues of these proteins do not elicit similar responses? This question is discussed in this report, on the basis of available sequences and structures of sweet-tasting proteins, as well as of sweetness-sensing receptors. A simple procedure based on sequence comparisons between sweet-tasting protein and its homologous counterparts was proposed to identify critical residues for sweetness elicitation. The open question on the physiological function of sweet-tasting plant proteins is also considered. In particular, this review leads us to suggest that sweet-tasting proteins may interact with taste receptor in a serendipity manner.
ISSN:0168-9452
1873-2259
DOI:10.1016/j.plantsci.2011.06.009