Energy and Lifetime of Temporary Anion States of Uracil by Stabilization Method

To investigate the temporary anion states of uracil, density functional theory with asymptotically corrected potentials is adopted. The stabilized Koopmans’ theorem and stabilized Koopmans-based approximation are used in conjunction with an analytic continuation procedure to calculate its resonance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2011-09, Vol.115 (35), p.10113-10121
Hauptverfasser: Cheng, Hsiu-Yao, Chen, Chi-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the temporary anion states of uracil, density functional theory with asymptotically corrected potentials is adopted. The stabilized Koopmans’ theorem and stabilized Koopmans-based approximation are used in conjunction with an analytic continuation procedure to calculate its resonance energies and lifetimes. Results indicate the presence of several low-lying π* and σ* temporary anion states of uracil. The characteristics of these resonance orbitals are also analyzed. By comparing them with the experimental values and theoretical calculations, it is believed that the stabilization approach can provide more information on the resonance states.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp205986z