Affinity characterization–mass spectrometry methodology for quantitative analyses of small molecule protein binding in solution

Affinity characterization by mass spectrometry (AC–MS) is a novel LC–MS methodology for quantitative determination of small molecule ligand binding to macromolecules. Its most distinguishing feature is the direct determination of all three concentration terms of the equilibrium binding equation, i.e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical biochemistry 2011-11, Vol.418 (1), p.10-18
Hauptverfasser: Vilenchik, Lev Z., Sheth, Payal R., Chuang, Cheng-Chi, Le, Hung V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Affinity characterization by mass spectrometry (AC–MS) is a novel LC–MS methodology for quantitative determination of small molecule ligand binding to macromolecules. Its most distinguishing feature is the direct determination of all three concentration terms of the equilibrium binding equation, i.e., (M), (L), and (ML), which denote the macromolecule, ligand, and the corresponding complex, respectively. Although it is possible to obtain the dissociation constant from a single mixing experiment, saturation analyses are still valuable for assessing the overall binding phenomenon based on an established formalism. In addition to providing the prerequisite dissociation constant and binding stoichiometry, the technique also provides valuable information about the actual solubility of both macromolecule and ligand upon dilution and mixing in binding buffers. The dissociation constants and binding mode for interactions of DNA primase and thymidylate synthetase (TS) with high and low affinity small molecule ligands were obtained using the AC–MS method. The data were consistent with the expected affinity of TS for these ligands based on dissociation constants determined by alternative thermal-denaturation techniques: TdF or TdCD, and also consistent enzyme inhibition constants reported in the literature. The validity of AC–MS was likewise extended to a larger set of soluble protein–ligand systems. It was established as a valuable resource for counter screen and structure–activity relationship studies in drug discovery, especially when other classical techniques could only provide ambiguous results.
ISSN:0003-2697
1096-0309
DOI:10.1016/j.ab.2011.06.007