Activity of three β-1,4-galactanases on small chromogenic substrates

β-1,4-Galactanases belong to glycoside hydrolase family GH 53 and degrade galactan and arabinogalactan side chains of the complex pectin network in plant cell walls. Two fungal β-1,4-galactanases from Aspergillus aculeatus, Meripileus giganteus and one bacterial enzyme from Bacillus licheniformis ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate research 2011-09, Vol.346 (13), p.2028-2033
Hauptverfasser: Torpenholt, Søs, Le Nours, Jérôme, Christensen, Ulla, Jahn, Michael, Withers, Stephen, Østergaard, Peter Rahbek, Borchert, Torben V., Poulsen, Jens-Christian, Lo Leggio, Leila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:β-1,4-Galactanases belong to glycoside hydrolase family GH 53 and degrade galactan and arabinogalactan side chains of the complex pectin network in plant cell walls. Two fungal β-1,4-galactanases from Aspergillus aculeatus, Meripileus giganteus and one bacterial enzyme from Bacillus licheniformis have been kinetically characterized using the chromogenic substrate analog 4-nitrophenyl β-1,4-d-thiogalactobioside synthesized by the thioglycoligase approach. Values of kcat/Km for this substrate with A. aculeatus β-1,4-galactanase at pH 4.4 and for M. giganteus β-1,4-galactanase at pH 5.5 are 333M−1s−1 and 62M−1s−1, respectively. By contrast the B. licheniformis β-1,4-galactanase did not hydrolyze 4-nitrophenyl β-1,4-d-thiogalactobioside. The different kinetic behavior observed between the two fungal and the bacterial β-1,4-galactanases can be ascribed to an especially long loop 8 observed only in the structure of B. licheniformis β-1,4-galactanase. This loop contains substrate binding subsites −3 and −4, which presumably cause B. licheniformis β-1,4-galactanase to bind 4-nitrophenyl -1,4-β-d-thiogalactobioside non-productively. In addition to their cleavage of 4-nitrophenyl -1,4-β-d-thiogalactobioside, the two fungal enzymes also cleaved the commercially available 2-nitrophenyl-1,4-β-d-galactopyranoside, but kinetic parameters could not be determined because of transglycosylation at substrate concentrations above 4mM.
ISSN:0008-6215
1873-426X
DOI:10.1016/j.carres.2011.05.017