Potentiation of arsenic trioxide-induced apoptosis by 8-bromo-7-methoxychrysin in human leukemia cells involves depletion of intracellular reduced glutathione

The novel chrysin analog 8-bromo-7-methoxychrysin (BrMC) has been reported to induce apoptosis of various cancer cell lines. Arsenic trioxide (ATO) treatment induces clinical remission in acute promyelocytic leukemia patients. The combination of ATO with other agents has been shown to improve therap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biochimica et biophysica Sinica 2011-09, Vol.43 (9), p.712-721
Hauptverfasser: Xiao, Guangfen, Tang, Xueyuan, Yao, Chenjiao, Wang, Chenghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The novel chrysin analog 8-bromo-7-methoxychrysin (BrMC) has been reported to induce apoptosis of various cancer cell lines. Arsenic trioxide (ATO) treatment induces clinical remission in acute promyelocytic leukemia patients. The combination of ATO with other agents has been shown to improve therapeutic effectiveness in vitro and in vivo. In this report, the mechanism of apoptosis induced by treatment with ATO alone or in combination with BrMC was studied in U937, HL-60, and Jurkat ceils. Our results demonstrated that BrMC cooperated with ATO to induce apoptosis in human leukemia cells. This co-treatment caused mitochondrial transmembrane potential dissipation and stimulated the mitochondrial apoptotic pathway, as evidenced by cytochrome c release, down-regulation of X-linked inhibitor of apoptosis (XIAP) and BcI-XL, and up-regulation of Bax. BrMC alone or in combination with ATO, decreased Akt phosphorylation as well as intracellular reduced glutathione (GSH) content. The thiol antioxidant N-acetylcysteine and exogenous GSH restored GSH content and attenuated apoptosis induced by co-treatment with ATO plus BrMC. In contrast, the non-thiol antioxidant butylated hydroxyanisole and mannitol failed to do so. These findings suggest that GSH depletion explains at least in part the potentiation of ATO-induced apoptosis by BrMC.
ISSN:1672-9145
1745-7270
DOI:10.1093/abbs/gmr065