Pyrazole analogues of porphyrins and oxophlorins

A series of porphyrin analogues with pyrazole rings replacing one of the usual pyrrole subunits have been synthesized. This was accomplished by reacting 1-phenyl, 1-methyl and 1-ethyl pyrazole-1,3-dicarbaldehydes with a tripyrrane in the presence of TFA, followed by an oxidation step. The initially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2011-09, Vol.9 (18), p.6293-6305
Hauptverfasser: Young, Alexandra M, Von Ruden, Amber L, Lash, Timothy D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of porphyrin analogues with pyrazole rings replacing one of the usual pyrrole subunits have been synthesized. This was accomplished by reacting 1-phenyl, 1-methyl and 1-ethyl pyrazole-1,3-dicarbaldehydes with a tripyrrane in the presence of TFA, followed by an oxidation step. The initially formed phlorin product was sufficiently stable for the N-phenyl system to be isolated and characterized, although the related N-alkyl phlorin analogues were less stable. Attempts to dehydrogenate the intermediary phlorins with DDQ resulted in decomposition, but the N-alkylphlorins could be oxidized with 0.2% aqueous ferric chloride solutions. Although the phenyl-substituted phlorin could not be oxidized under these conditions, it did afford the pyrazoloporphyrin upon treatment with silver acetate under acidic conditions. Oxidations with silver acetate also afforded oxophlorin analogues where the oxo-linkage was selectively formed at the 5-position. The pyrazole-containing porphyrin analogues are cross-conjugated and exhibit only a small degree of diatropic character. The internal CH resonances were observed between 5.27 and 5.87 ppm, while the external meso-protons fell into a range of 6.84-7.88 ppm. The borderline overall aromatic character was attributed to dipolar resonance contributors. Protonation considerably increased the diatropicity and the diprotonated dications formed from these porphyrin analogues gave the internal CH resonance at upfield values of 2.65-3.20 ppm. The aromatic character was enhanced by the presence of an electron-donating alkyl substituent on the nitrogen compared to the phenyl-substituted species. The pyrazoloporphyrins reacted with nickel(II) acetate in DMF, or palladium(II) acetate in acetonitrile, to give the corresponding organometallic derivatives. The metal complexes showed increased diatropic character but protonation afforded nonaromatic cations. The oxophlorin analogues were also nonaromatic in the free base and protonated forms. This work extends our understanding of carbaporphyrinoid systems and provides the first detailed studies on pyrazole-containing porphyrin analogues.
ISSN:1477-0520
1477-0539
DOI:10.1039/c1ob05603d