Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

Cloud cover at CERN A substantial source of cloud condensation nuclei in the atmospheric boundary layer is thought to originate from the nucleation of trace sulphuric acid vapour. Despite extensive research, we still lack a quantitative understanding of the nucleation mechanism and the possible role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2011-08, Vol.476 (7361), p.429-433
Hauptverfasser: Kirkby, Jasper, Curtius, Joachim, Almeida, João, Dunne, Eimear, Duplissy, Jonathan, Ehrhart, Sebastian, Franchin, Alessandro, Gagné, Stéphanie, Ickes, Luisa, Kürten, Andreas, Kupc, Agnieszka, Metzger, Axel, Riccobono, Francesco, Rondo, Linda, Schobesberger, Siegfried, Tsagkogeorgas, Georgios, Wimmer, Daniela, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, David, André, Dommen, Josef, Downard, Andrew, Ehn, Mikael, Flagan, Richard C., Haider, Stefan, Hansel, Armin, Hauser, Daniel, Jud, Werner, Junninen, Heikki, Kreissl, Fabian, Kvashin, Alexander, Laaksonen, Ari, Lehtipalo, Katrianne, Lima, Jorge, Lovejoy, Edward R., Makhmutov, Vladimir, Mathot, Serge, Mikkilä, Jyri, Minginette, Pierre, Mogo, Sandra, Nieminen, Tuomo, Onnela, Antti, Pereira, Paulo, Petäjä, Tuukka, Schnitzhofer, Ralf, Seinfeld, John H., Sipilä, Mikko, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Vanhanen, Joonas, Viisanen, Yrjo, Vrtala, Aron, Wagner, Paul E., Walther, Hansueli, Weingartner, Ernest, Wex, Heike, Winkler, Paul M., Carslaw, Kenneth S., Worsnop, Douglas R., Baltensperger, Urs, Kulmala, Markku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud cover at CERN A substantial source of cloud condensation nuclei in the atmospheric boundary layer is thought to originate from the nucleation of trace sulphuric acid vapour. Despite extensive research, we still lack a quantitative understanding of the nucleation mechanism and the possible role of cosmic rays, creating one of the largest uncertainties in atmospheric models and climate predictions. Jasper Kirkby and colleagues present the first results from the CLOUD experiment at CERN, which studies nucleation and other ion-aerosol cloud interactions under precisely controlled conditions. They find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume increase the nucleation rate of sulphuric acid particles by more than a factor of 100 to 1,000. They also find that ion-induced binary nucleation of H 2 SO 4 –H 2 O can occur in the mid-troposphere, but is negligible in the boundary layer and so additional species are necessary. Even with the large enhancements in rate caused by ammonia and ions, they conclude that atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary layer nucleation. Atmospheric aerosols exert an important influence on climate 1 through their effects on stratiform cloud albedo and lifetime 2 and the invigoration of convective storms 3 . Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours 4 , although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small 5 , 6 . Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia 7 . Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleatio
ISSN:0028-0836
1476-4687
DOI:10.1038/nature10343