Thermostability of Cromobacterium viscosum lipase in AOT/isooctane reverse micelle

The thermostability of Cromobacterium viscosum lipase (EC 3.1.1.3) entrapped in AOT (sodium bis-[2-ethylhexyl] sulfosuccinate) reverse micelles was increased by the addition of short-chain polyethylene glycol (PEG 400). Two different approaches were considered: (1) the determination of half-life tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2007-04, Vol.141 (1), p.77-83
Hauptverfasser: Talukder, M M R, Zaman, M M, Hayashi, Y, Wu, J C, Kawanishi, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermostability of Cromobacterium viscosum lipase (EC 3.1.1.3) entrapped in AOT (sodium bis-[2-ethylhexyl] sulfosuccinate) reverse micelles was increased by the addition of short-chain polyethylene glycol (PEG 400). Two different approaches were considered: (1) the determination of half-life time and (2) the mechanistic analysis of deactivation kinetics. The half-life of lipase entrapped in AOT/isooctane reverse micelles with PEG 400 at 60 degrees C was 28 h, ninefold higher than that in reverse micelles without PEG 400. The lipase entrapped in both reverse micellar systems followed a series-type deactivation mechanism involving two first-order steps. The deactivation constant for the first step at 60 degrees C in PEG containing reverse micelles was 0.055 h!1, 11-fold lower than that in reverse micelles without PEG, whereas it remained almost constant for the second step. The inactivation energy of the lipase entrapped in reverse micelles with and without PEG 400 was 88.12 and 21.97 kJ/mol, respectively.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-007-9211-7