Study of the Differentially Expressed Genes in Pleomorphic Adenoma Using cDNA Microarrays

Recent studies have determined that gene expression profiling using microarray technology can be used to identify tumor-related molecules. The objective of this study was to screen the differentially expressed genes between pleomorphic adenoma (PA) and the normal tissue adjacent to PA using cDNA mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathology oncology research 2011-09, Vol.17 (3), p.765-769
Hauptverfasser: Song, Meng, Xiao, Cuicui, Wang, Tingle, Pei, Qingguo, Wang, Shiwei, Xu, Liqun, Chen, Wantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies have determined that gene expression profiling using microarray technology can be used to identify tumor-related molecules. The objective of this study was to screen the differentially expressed genes between pleomorphic adenoma (PA) and the normal tissue adjacent to PA using cDNA microarrays and to further validate the differentially expressed genes by real-time PCR. In this study, we selected five pairs of PA and the surrounding normal salivary gland tissues. The total RNA was isolated from tumor and normal tissues and purified to mRNA. The mRNA was reverse-transcribed to cDNA with the incorporation of fluorescent-labeled dUTP to prepare the hybridization probes. The mixed probes were hybridized to Whole Human Gene Expression Microarrays by Agilent. Tumor-related genes were screened by analyzing the fluorescence intensity. As a result, a total of 447 genes were found to be differentially expressed between PA and normal tissue adjacent to PA. Among them, 185 genes were up-regulated and 262 genes were down-regulated in PA. By constructing a network from the differentially expressed genes, some genes, such as Gli2 and CTNNB1, were identified as being at the core of the network. In addition, differential gene expression was validated for 2 up-regulated genes, Gli2 and LOX, using real-time PCR and the results were consistent with those of the cDNA microarray analysis thus verifying the credibility of the microarray data. Therefore, our microarray data may provide clues for finding novel genes involved in the development of PA, and shed light on finding new targets for diagnosis and therapy of PA. Further characterization of these differentially expressed genes will be useful in understanding the genetic basis for PA.
ISSN:1219-4956
1532-2807
DOI:10.1007/s12253-011-9384-9