Choice of oils for essential fat supplements can enhance production of abnormal metabolites in fat oxidation disorders
Patients with mitochondrial long-chain fat oxidation deficiencies are usually treated with diets containing reduced fat and increased carbohydrate, at times via gastrostomy feeding. To ensure adequate intake of essential fatty acids, supplements are provided to their diets using commercially availab...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and metabolism 2007-12, Vol.92 (4), p.346-350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patients with mitochondrial long-chain fat oxidation deficiencies are usually treated with diets containing reduced fat and increased carbohydrate, at times via gastrostomy feeding. To ensure adequate intake of essential fatty acids, supplements are provided to their diets using commercially available oils. These oils contain large quantities of non-essential fats that are preferentially oxidized and produce disease-specific metabolites (acyl-CoA intermediates) due to the genetic defect. This study describes the concentrations of these intermediates as reflected by acylcarnitines as well as the % contribution from each of four fatty acids: palmitate, oleate, linoleate, and α-linolenate when incubated with fibroblasts from patients with VLCAD, LCHAD, and trifunctional protein (TFP) deficiencies. Palmitate and oleate produce the majority of disease-specific acylcarnitines with these defective cell lines (79–94%) whereas linoleate and linolenate produced less (6–21%). On average, the amount of acylcarnitines decreased with increasing unsaturation (C18:1
>
C18:2
>
C18:3:34%
>
11%
>
3%, respectively. This relationship may reflect the “gatekeeper” role of carnitine palmitoyltransferase I (CPT I). A diet comparison between Canola and a combination of Flax/Walnut oils revealed that the latter, containing the least amount of non-essential fats, reduced blood acylcarnitine levels by 33–36%. The etiology of the severe peripheral neuropathy of TFP deficiency may result from the unique metabolite, 3-keto-acyl-CoA, after conversion to a methylketone via spontaneous decarboxylation. Essential fatty acid supplementation with oils should consider these findings to decrease production of disease-specific acyl-CoA intermediates. |
---|---|
ISSN: | 1096-7192 1096-7206 |
DOI: | 10.1016/j.ymgme.2007.07.012 |