The generation of iPS cells using non-viral magnetic nanoparticlebased transfection
Abstract Induced pluripotent stem (iPS) cells have been generated from various somatic cells; however, a major restriction of the technology is the use of potentially harmful genome-integrating viral DNAs. Here, without a viral vector, we generated iPS cells from fibroblasts using a non-viral magnet...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-10, Vol.32 (28), p.6683-6691 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Induced pluripotent stem (iPS) cells have been generated from various somatic cells; however, a major restriction of the technology is the use of potentially harmful genome-integrating viral DNAs. Here, without a viral vector, we generated iPS cells from fibroblasts using a non-viral magnetic nanoparticle-based transfection method that employs biodegradable cationic polymer PEI-coated super paramagnetic nanoparticles (NP). Our findings support the possible use of transient expression of iPS genes in somatic cells by magnet-based nanofection for efficient generation of iPS cells. Results of dynamic light scattering (DLS) analysis and TEM analyses demonstrated efficient conjugation of NP with iPS genes. After transfection, nanofection-mediated iPS cells showed ES cell-like characteristics, including expression of endogenous pluripotency genes, differentiation of three germ layer lineages, and formation of teratomas. Our results demonstrate that magnet-based nanofection may provide a safe method for use in generation of virus-free and exogenous DNA-free iPS cells, which will be crucial for future clinical applications in the field of regenerative medicine. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2011.05.070 |