Proteomic study of Carissa spinarum in response to combined heat and drought stress

Carissa spinarum is one of the secondary advantage plants grown in dry-hot valleys in China, which can survive under stress conditions of high temperature and extreme low humidity. Here, we studied the physiological and proteomic changes of C. spinarum in response to 42°C heat stress treatment in co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2010-09, Vol.10 (17), p.3117-3129
Hauptverfasser: Zhang, Minhua, Li, Gwowei, Huang, Wei, Bi, Ting, Chen, Genyun, Tang, Zhangcheng, Su, Weiai, Sun, Weining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carissa spinarum is one of the secondary advantage plants grown in dry-hot valleys in China, which can survive under stress conditions of high temperature and extreme low humidity. Here, we studied the physiological and proteomic changes of C. spinarum in response to 42°C heat stress treatment in combination with drought stress. Dynamic changes in the leaf proteome were analyzed at four time points during the stress treatment and recovery stages. Approximately, 650 protein spots were reproducibly detected in each gel. Forty-nine spots changed their expression levels upon heat and drought treatment, and 30 proteins were identified by MS and 2-D Western blot. These proteins were classified into several categories including HSP, photosynthesis-related protein, RNA-processing protein and proteins involved in metabolism and energy production. The potential roles of these stress-responsive proteins are discussed.
ISSN:1615-9853
1615-9861
1615-9861
DOI:10.1002/pmic.200900637