Analysis of the phosphoproteome of the multicellular bacterium Streptomyces coelicolor A3(2) by protein/peptide fractionation, phosphopeptide enrichment and high-accuracy mass spectrometry
The serine (Ser)/threonine (Thr)/tyrosine (Tyr) phosphoproteome of exponentially growing Streptomyces coelicolor A3(2) was analysed using the gel-free approaches of preparative IEF for protein fractionation, followed by strong cation exchange peptide fractionation and phosphopeptide enrichment by Ti...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2010-07, Vol.10 (13), p.2486-2497 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The serine (Ser)/threonine (Thr)/tyrosine (Tyr) phosphoproteome of exponentially growing Streptomyces coelicolor A3(2) was analysed using the gel-free approaches of preparative IEF for protein fractionation, followed by strong cation exchange peptide fractionation and phosphopeptide enrichment by TiO₂ metal oxide affinity chromatography. Phosphopeptides were identified using LC-ESI-LTQ-Orbitrap[trade mark sign] MS. Forty-six novel phosphorylation sites were identified on 40 proteins involved in gene regulation or signalling, central metabolism, protein biosynthesis, membrane transport and cell division, as well as several of unknown function. In contrast to other studies, Thr phosphorylation appeared to be preferred, with relative levels of Ser, Thr and Tyr phosphorylation of 34, 52 and 14%, respectively. Genes for most of the 40 phosphorylated proteins reside in the central "housekeeping" region of the linear S. coelicolor chromosome, suggesting that in general Ser, Thr and Tyr phosphorylation play a role in regulating essential aspects of metabolism in streptomycetes. A greater number of regulators and putative regulators were also identified compared with other bacterial phosphoproteome studies, potentially reflecting the complex heterotrophic and developmental life style of S. coelicolor. This study is the first analysis of the phosphoproteome of a member of this morphologically complex and industrially important group of microorganisms. |
---|---|
ISSN: | 1615-9853 1615-9861 1615-9861 |
DOI: | 10.1002/pmic.201000090 |