Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging

Superparamagnetic iron oxide particles can be utilized to label cells for immune cell and stem cell therapy. The labeled cells cause significant field distortions induced in their vicinity, which can be detected with magnetic resonance imaging (MRI). In conventional imaging, the signal voids arising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2010-10, Vol.64 (4), p.1027-1038
Hauptverfasser: Eibofner, Frank, Steidle, Günter, Kehlbach, Rainer, Bantleon, Rüdiger, Schick, Fritz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superparamagnetic iron oxide particles can be utilized to label cells for immune cell and stem cell therapy. The labeled cells cause significant field distortions induced in their vicinity, which can be detected with magnetic resonance imaging (MRI). In conventional imaging, the signal voids arising from the field distortions lead to negative contrast, which is not desirable, as detection of the cells can be masked by native low signal tissue. In this work, a new method for visualizing magnetically labeled cells with positive contrast is proposed and described. The technique presented is based on the susceptibility‐weighted imaging (SWI) post‐processing algorithm. Phase images from gradient‐echo sequences are evaluated pixel by pixel, and a mask is created with values ranging from 0 to 1, depending on the phase value of the pixel. The magnitude image is then multiplied by the mask. With an appropriate mask function, positive contrast in the vicinity of the labeled cells is created. The feasibility of this technique is proved using an agar phantom containing superparamagnetic iron oxide particles–labeled cells and an ex vivo bovine liver. The results show high potential for detecting even small labeled cell concentrations in structurally inhomogeneous tissue types. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
ISSN:0740-3194
1522-2594
1522-2594
DOI:10.1002/mrm.22498