A multichannel temporally adaptive system for continuous cloud classification from satellite imagery

A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2003-05, Vol.41 (5), p.1098-1104
Hauptverfasser: Saitwal, K., Azimi-Sadjadi, M.R., Reinke, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 5
container_start_page 1098
container_title IEEE transactions on geoscience and remote sensing
container_volume 41
creator Saitwal, K.
Azimi-Sadjadi, M.R.
Reinke, D.
description A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test results for 27 h of continuous classification and updating are presented on a sequence of Geostationary Operational Environmental Satellite 8 images. Further test results of the system on two new sets of data with 1-2 weeks time difference are also presented that show the potential of this system as an operational continuous cloud classification system.
doi_str_mv 10.1109/TGRS.2003.813550
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_883031380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1206708</ieee_id><sourcerecordid>883031380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-9c4d5de87414cf405494bc7e5b26445fe3ba3655d3bf8483146faf9cca7f6c283</originalsourceid><addsrcrecordid>eNqNks1r3DAQxUVpodu090IvotCPi7cz1oflYwhtWggEkvRstLLUKsjWVpID-99HZgOBHtJeRjD6zfDm8Qh5i7BFhP7LzfnV9bYFYFuFTAh4RjYohGpAcv6cbAB72bSqb1-SVznfAiAX2G3IeEqnJRRvfut5toEWO-1j0iEcqB71vvg7S_Mh1zZ1MVET5-LnJS6ZmhCXsVads3fe6OLjTF2KE8262BB8sdRP-pdNh9fkhdMh2zcP7wn5-e3rzdn35uLy_MfZ6UVjBKrS9IaPYrSq48iN4yB4z3ems2LX1iOEs2ynmRRiZDunuGLIpdOuN0Z3TppWsRPy6bh3n-KfxeYyTD6bqkXPtkoelGLAkCmo5McnyeoUY9XG_wCZaiXKf4OdkoDIKvj5SRBlh5zxqrWi7_9Cb-OS5mphPYUzqP6sEBwhk2LOybphn6rv6TAgDGs0hjUawxqN4RiNOvLhYa_ORgeX9Gx8fpzjPfQ9X7l3R85bax-_W5AdKHYPCfbCHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884304943</pqid></control><display><type>article</type><title>A multichannel temporally adaptive system for continuous cloud classification from satellite imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Saitwal, K. ; Azimi-Sadjadi, M.R. ; Reinke, D.</creator><creatorcontrib>Saitwal, K. ; Azimi-Sadjadi, M.R. ; Reinke, D.</creatorcontrib><description>A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test results for 27 h of continuous classification and updating are presented on a sequence of Geostationary Operational Environmental Satellite 8 images. Further test results of the system on two new sets of data with 1-2 weeks time difference are also presented that show the potential of this system as an operational continuous cloud classification system.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2003.813550</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive systems ; Applied geophysics ; Classification ; Clouds ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Frequency ; High-resolution imaging ; Infrared ; Infrared imaging ; Internal geophysics ; Neural networks ; Optical imaging ; Probability theory ; Satellites ; System testing ; Temporal logic ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2003-05, Vol.41 (5), p.1098-1104</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-9c4d5de87414cf405494bc7e5b26445fe3ba3655d3bf8483146faf9cca7f6c283</citedby><cites>FETCH-LOGICAL-c518t-9c4d5de87414cf405494bc7e5b26445fe3ba3655d3bf8483146faf9cca7f6c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1206708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1206708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14909940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saitwal, K.</creatorcontrib><creatorcontrib>Azimi-Sadjadi, M.R.</creatorcontrib><creatorcontrib>Reinke, D.</creatorcontrib><title>A multichannel temporally adaptive system for continuous cloud classification from satellite imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test results for 27 h of continuous classification and updating are presented on a sequence of Geostationary Operational Environmental Satellite 8 images. Further test results of the system on two new sets of data with 1-2 weeks time difference are also presented that show the potential of this system as an operational continuous cloud classification system.</description><subject>Adaptive systems</subject><subject>Applied geophysics</subject><subject>Classification</subject><subject>Clouds</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>High-resolution imaging</subject><subject>Infrared</subject><subject>Infrared imaging</subject><subject>Internal geophysics</subject><subject>Neural networks</subject><subject>Optical imaging</subject><subject>Probability theory</subject><subject>Satellites</subject><subject>System testing</subject><subject>Temporal logic</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNks1r3DAQxUVpodu090IvotCPi7cz1oflYwhtWggEkvRstLLUKsjWVpID-99HZgOBHtJeRjD6zfDm8Qh5i7BFhP7LzfnV9bYFYFuFTAh4RjYohGpAcv6cbAB72bSqb1-SVznfAiAX2G3IeEqnJRRvfut5toEWO-1j0iEcqB71vvg7S_Mh1zZ1MVET5-LnJS6ZmhCXsVads3fe6OLjTF2KE8262BB8sdRP-pdNh9fkhdMh2zcP7wn5-e3rzdn35uLy_MfZ6UVjBKrS9IaPYrSq48iN4yB4z3ems2LX1iOEs2ynmRRiZDunuGLIpdOuN0Z3TppWsRPy6bh3n-KfxeYyTD6bqkXPtkoelGLAkCmo5McnyeoUY9XG_wCZaiXKf4OdkoDIKvj5SRBlh5zxqrWi7_9Cb-OS5mphPYUzqP6sEBwhk2LOybphn6rv6TAgDGs0hjUawxqN4RiNOvLhYa_ORgeX9Gx8fpzjPfQ9X7l3R85bax-_W5AdKHYPCfbCHA</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Saitwal, K.</creator><creator>Azimi-Sadjadi, M.R.</creator><creator>Reinke, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030501</creationdate><title>A multichannel temporally adaptive system for continuous cloud classification from satellite imagery</title><author>Saitwal, K. ; Azimi-Sadjadi, M.R. ; Reinke, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-9c4d5de87414cf405494bc7e5b26445fe3ba3655d3bf8483146faf9cca7f6c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptive systems</topic><topic>Applied geophysics</topic><topic>Classification</topic><topic>Clouds</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>High-resolution imaging</topic><topic>Infrared</topic><topic>Infrared imaging</topic><topic>Internal geophysics</topic><topic>Neural networks</topic><topic>Optical imaging</topic><topic>Probability theory</topic><topic>Satellites</topic><topic>System testing</topic><topic>Temporal logic</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saitwal, K.</creatorcontrib><creatorcontrib>Azimi-Sadjadi, M.R.</creatorcontrib><creatorcontrib>Reinke, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saitwal, K.</au><au>Azimi-Sadjadi, M.R.</au><au>Reinke, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multichannel temporally adaptive system for continuous cloud classification from satellite imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2003-05-01</date><risdate>2003</risdate><volume>41</volume><issue>5</issue><spage>1098</spage><epage>1104</epage><pages>1098-1104</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test results for 27 h of continuous classification and updating are presented on a sequence of Geostationary Operational Environmental Satellite 8 images. Further test results of the system on two new sets of data with 1-2 weeks time difference are also presented that show the potential of this system as an operational continuous cloud classification system.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2003.813550</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2003-05, Vol.41 (5), p.1098-1104
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_883031380
source IEEE Electronic Library (IEL)
subjects Adaptive systems
Applied geophysics
Classification
Clouds
Earth sciences
Earth, ocean, space
Exact sciences and technology
Frequency
High-resolution imaging
Infrared
Infrared imaging
Internal geophysics
Neural networks
Optical imaging
Probability theory
Satellites
System testing
Temporal logic
Weather forecasting
title A multichannel temporally adaptive system for continuous cloud classification from satellite imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multichannel%20temporally%20adaptive%20system%20for%20continuous%20cloud%20classification%20from%20satellite%20imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Saitwal,%20K.&rft.date=2003-05-01&rft.volume=41&rft.issue=5&rft.spage=1098&rft.epage=1104&rft.pages=1098-1104&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2003.813550&rft_dat=%3Cproquest_RIE%3E883031380%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884304943&rft_id=info:pmid/&rft_ieee_id=1206708&rfr_iscdi=true