A multichannel temporally adaptive system for continuous cloud classification from satellite imagery

A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2003-05, Vol.41 (5), p.1098-1104
Hauptverfasser: Saitwal, K., Azimi-Sadjadi, M.R., Reinke, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A two-channel temporal updating system is presented, which accounts for feature changes in the visible and infrared satellite images. The system uses two probabilistic neural network classifiers and a context-based predictor to perform continuous cloud classification during the day and night. Test results for 27 h of continuous classification and updating are presented on a sequence of Geostationary Operational Environmental Satellite 8 images. Further test results of the system on two new sets of data with 1-2 weeks time difference are also presented that show the potential of this system as an operational continuous cloud classification system.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2003.813550