Stability and Hopf bifurcation in an approachable haematopoietic stem cells model
We consider the haematopoietic stem cells model (HSC) with one delay introduced by Mackey [M.C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, blood 51 (1978) 5; M.C. Mackey, Mathematical models of haematopoietic cell replication and control, in: The Art of...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2007-04, Vol.206 (2), p.176-184 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the haematopoietic stem cells model (HSC) with one delay introduced by Mackey [M.C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, blood 51 (1978) 5; M.C. Mackey, Mathematical models of haematopoietic cell replication and control, in: The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, H.G. Othmer, F.R. Adler, M.A. Lewis, J.C. Dallon (Eds), Prentice-Hall, New York, 1997, p. 149] and Andersen and Mackey [L.K. Andersen, M.C. Mackey, Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia, J. theor. Biol. 209 (2001) 113]. There are two possible stationary states in the model. One of them is trivial and the second
E
∗(
τ) depending on the delay is non-trivial . This paper investigates the stability of the non-trivial state and occurrence of the Hopf bifurcation depending on time delay.
We prove the existence and uniqueness of a critical values
τ
0 and
τ
¯
of the delay such that
E
∗(
τ) is asymptotically stable for
τ
<
τ
0 and unstable for
τ
0
<
τ
<
τ
¯
. We show that
E
∗(
τ
0) is a Hopf bifurcation critical point for an approachable model. |
---|---|
ISSN: | 0025-5564 1879-3134 |
DOI: | 10.1016/j.mbs.2006.03.004 |