Distribution of Aceria guerreronis and Neoseiulus baraki among and within coconut bunches in northeast Brazil

Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of coconut in many countries in the Americas, Africa and parts of Asia. Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) is one of the predatory mites most commonly found in association with A. guerreronis in parts of no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental & applied acarology 2011-08, Vol.54 (4), p.373-384
Hauptverfasser: Galvão, Andréia S., Gondim, Manoel G. C., De Moraes, Gilberto J., Melo, José W. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of coconut in many countries in the Americas, Africa and parts of Asia. Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) is one of the predatory mites most commonly found in association with A. guerreronis in parts of northeast Brazil. The objective of this work was to study the distribution of A. guerreronis and N. baraki among and within coconut bunches. The hypothesis was tested that A. guerreronis and N. baraki are homogenously distributed over the fruits in a bunch, independent of the fruits’ age and position. Five collections of bunches, each corresponding to leaves 12–16 from apex (about 2–6 month-old), were conducted in each of three fields in northeastern Brazil, from February to October, 2007. A total of 1,986 fruits were examined. The number of mites, the percentage of fruits hosting them and the level of damage caused by A . guerreronis were evaluated. The highest density of A. guerreronis was observed on fruits of bunch 4 whereas the highest density of N. baraki was observed on bunch 5. Considering all fruits together, no significant differences were observed between densities of either A. guerreronis or N. baraki among the basal, median and apical thirds of the bunches. In younger bunches, fruits of the apical region tend to have lower densities of both mites than fruits of the basal region. This pattern, in association with a similar pattern for the percentage of fruits hosting N . baraki , suggests that the predator initially reaches the basal bunch region, from where it moves to the apical region. The results of the present study suggest that the pest population reduction in bunches older than bunch 4 could be due to (1) an effect of the predator, (2) reduction of the proportion of undamaged tissues amenable to attack, and/or (3) less favorable characteristics of the fruits to attack by A. guerreronis , as indicated by their increasing lignin content as they get older.
ISSN:0168-8162
1572-9702
DOI:10.1007/s10493-011-9464-2