Histone deacetylase inhibitors promote neurosteroid-mediated cell differentiation and enhance serotonin-stimulated brain-derived neurotrophic factor gene expression in rat C6 glioma cells

Progesterone treatment has previously been reported to promote the differentiation of glial cells probably through the production of 5α‐reduced neurosteroids, resulting in the enhancement of serotonin‐stimulated brain‐derived neurotrophic factor (BDNF) gene expression, which is considered to contrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2009-08, Vol.87 (11), p.2608-2614
Hauptverfasser: Morita, Kyoji, Gotohda, Takako, Arimochi, Hideki, Lee, Mi-Sook, Her, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Progesterone treatment has previously been reported to promote the differentiation of glial cells probably through the production of 5α‐reduced neurosteroids, resulting in the enhancement of serotonin‐stimulated brain‐derived neurotrophic factor (BDNF) gene expression, which is considered to contribute to the survival, regeneration, and plasticity of neuronal cells in the brain and hence has been suggested to improve mood disorders and other symptoms in depressive patients. Based on these previous observations, the effects on glial cells of histone deacetylase (HDAC) inhibitors, which are known as agents promoting cell differentiation, were examined using rat C6 glioma cells as a model for in vitro studies. Consequently, trichostatin A (TSA), sodium butyrate (NaB), and valproic acid (VPA) stimulated glial fibrillary acidic protein (GFAP) gene expression, and their stimulatory effects on GFAP gene expression were inhibited by treatment of these cells with finasteride, an inhibitor of the enzyme producing 5α‐reduced neurosteroids. In addition, HDAC inhibitors enhanced serotonin‐stimulated BDNF gene expression, the enhancement of which could be abolished by the inhibition of 5α‐reduced neurosteroid production in the glioma cells. These results suggest that HDAC inhibitors may be able to promote the differentiation of rat C6 glioma cells through the production of 5α‐reduced neurosteroids, resulting in the enhancement of serotonin‐stimulated BDNF gene expression as a consequence of promoting their differentiation, indicating the possibility that differentiated glial cells may be implicated in preserving the integrity of neural networks as well as improving the function of neuronal cells in the brain. © 2009 Wiley‐Liss, Inc.
ISSN:0360-4012
1097-4547
1097-4547
DOI:10.1002/jnr.22072