Spatiotemporal Characteristics of Meteorological Drought for the Island of Crete
A modified drought index, named the spatially normalized–standardized precipitation index (SN-SPI), has been developed for assessing meteorological droughts. The SN–SPI is a variant index to the standardized precipitation index and is based on the probability of precipitation at different time scale...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2011-04, Vol.12 (2), p.206-226 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A modified drought index, named the spatially normalized–standardized precipitation index (SN-SPI), has been developed for assessing meteorological droughts. The SN–SPI is a variant index to the standardized precipitation index and is based on the probability of precipitation at different time scales, but it is spatially normalized for improved assessment of drought severity. Results of this index incorporate the spatial distribution of precipitation and produce improved drought warnings. This index is applied in the island of Crete, Greece, and the drought results are compared to the ones of SPI. A 30-year-long average monthly precipitation dataset from 130 watersheds of the island is used by the above indices for drought classification in terms of its duration and intensity. Bias-adjusted monthly precipitation estimates from an ensemble of 10 regional climate models were used to quantify the influence of global warming to drought conditions over the period 2010–2100. Results based on both indices (calculated for three time scales of 12, 24, and 48 months) from 3 basins in west, central, and east parts of the island show that 1) the extreme drought periods are the same (reaching 7% of time) but the intensities based on SN–SPI are lower; 2) the area covered by extreme droughts is 3% (first time scale), 16% (second time scale), and 25% (third time scale), and 96% (first time scale), 95% (second time scale), and 80% (third time scale) based on the SN–SPI and SPI, respectively; 3) concerning the longest time scale (48 months), more than half of the area of Crete is about to experience drought conditions during 28%, 69%, and 97% for 2010–40, 2040–70, and 2070–2100, respectively; and 4) extremely dry conditions will cover 52%, 33%, and 25% of the island for the future 90-year period using 12-, 24-, and 48-month SN–SPI, respectively. |
---|---|
ISSN: | 1525-755X 1525-7541 |
DOI: | 10.1175/2010JHM1252.1 |