Fluorescence spectroscopy of electrochemically self-assembled ZnSe and Mn:ZnSe nanowires

We report room temperature fluorescence spectroscopy (FL) studies of ZnSe and Mn-doped ZnSe nanowires of different diameters (10, 25, 50 nm) produced by an electrochemical self-assembly technique. All samples exhibit increasing blue-shift in the band edge fluorescence with decreasing wire diameter b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2008-05, Vol.19 (19), p.195601-195601 (6)
Hauptverfasser: Ramanathan, Sivakumar, Patibandla, Sridhar, Bandyopadhyay, Supriyo, Anderson, John, Edwards, Jarrod D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report room temperature fluorescence spectroscopy (FL) studies of ZnSe and Mn-doped ZnSe nanowires of different diameters (10, 25, 50 nm) produced by an electrochemical self-assembly technique. All samples exhibit increasing blue-shift in the band edge fluorescence with decreasing wire diameter because of quantum confinement. The 10 nm ZnSe nanowires show four distinct emission peaks due to band-to-band recombination, exciton recombination, recombination via surface states and via band gap (trap) states. The exciton binding energy in these nanowires exhibits a giant increase (∼10-fold) over the bulk value due to quantum confinement, since the effective wire radius (taking into account side depletion) is smaller than the exciton Bohr radius in bulk ZnSe. The 25 and 50 nm diameter wires show only a single FL peak due to band-to-band electron-hole recombination. In the case of Mn-doped ZnSe nanowires, the band edge luminescence in 10 nm samples is significantly quenched by Mn doping but not the exciton luminescence, which remains relatively unaffected. We observe additional features due to Mn(2+) ions. The spectra also reveal that the emission from Mn(2+) states increases in intensity and is progressively red-shifted with increasing Mn concentration.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/19/19/195601