Temperature dependence of the energy dissipation in dynamic force microscopy
The dissipation of energy in dynamic force microscopy is usually described in terms of an adhesion hysteresis mechanism. This mechanism should become less efficient with increasing temperature. To verify this prediction we have measured topography and dissipation data with dynamic force microscopy i...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2008-01, Vol.19 (4), p.045703-045703 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dissipation of energy in dynamic force microscopy is usually described in terms of an adhesion hysteresis mechanism. This mechanism should become less efficient with increasing temperature. To verify this prediction we have measured topography and dissipation data with dynamic force microscopy in the temperature range from 100 K up to 300 K. We used 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both materials exhibiting a strong dissipation signal at large frequency shifts. At room temperature, the energy dissipated into the sample (or tip) is 1.9 eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good agreement with an adhesion hysteresis mechanism. The energy dissipation over the PTCDA surface decreases with increasing temperature, yielding a negative temperature coefficient. For the KBr substrate, we find the opposite behaviour: an increase of dissipated energy with increasing temperature. While the negative temperature coefficient in the case of PTCDA agrees rather well with the adhesion hysteresis model, the positive slope found for KBr points to a hitherto unknown dissipation mechanism. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/19/04/045703 |