p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate
Proteolytic systems and the aggresome pathway contribute to preventing accumulation of cytotoxic aggregation-prone proteins. Although polyubiquitylation is usually required for degradation or aggresome formation, several substrates are processed independently of ubiquitin through a poorly understood...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2011-08, Vol.124 (Pt 16), p.2692-2701 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteolytic systems and the aggresome pathway contribute to preventing accumulation of cytotoxic aggregation-prone proteins. Although polyubiquitylation is usually required for degradation or aggresome formation, several substrates are processed independently of ubiquitin through a poorly understood mechanism. Here, we found that p62/SQSTM1, a multifunctional adaptor protein, was involved in the selective autophagic clearance of a non-ubiquitylated substrate, namely an aggregation-prone isoform of STAT5A (STAT5A_ΔE18). By using a cell line that stably expressed STAT5A_ΔE18, we investigated the properties of its aggregation and degradation. We found that STAT5A_ΔE18 formed non-ubiquitylated aggresomes and/or aggregates by impairment of proteasome functioning or autophagy. Transport of these aggregates to the perinuclear region was inhibited by trichostatin A or tubacin, inhibitors of histone deacetylase (HDAC), indicating that the non-ubiquitylated aggregates of STAT5A_ΔE18 were sequestered into aggresomes in an HDAC6-dependent manner. Moreover, p62 was bound to STAT5A_ΔE18 through its PB1 domain, and the oligomerization of p62 was required for this interaction. In p62-knockdown experiments, we found that p62 was required for autophagic clearance of STAT5A_ΔE18 but not for its aggregate formation, suggesting that the binding of p62 to non-ubiquitylated substrates might trigger their autophagic clearance. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.081232 |