A Monge-Ampère enhancement for semi-Lagrangian methods

Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-07, Vol.46 (1), p.180-185
Hauptverfasser: Cossette, Jean-François, Smolarkiewicz, Piotr K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 180
container_title Computers & fluids
container_volume 46
creator Cossette, Jean-François
Smolarkiewicz, Piotr K.
description Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial.
doi_str_mv 10.1016/j.compfluid.2011.01.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880680541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793011000363</els_id><sourcerecordid>1671621872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c47eb0c1996d188c8819bfed8f1497165f80e88ea6be779d0c3e815242e25adb3</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKvP4N7pzdZJ9ifJ5VL8g4o3eh2yyWybsn8mW8E38j18MVMqXiocGAbOOcN8hFxSWFCg5c12YYZubNqdswsGlC4giskjMqOCyxR4zo_JDCAvUi4zOCVnIWwh7hnLZ4RXydPQrzGtuvHr02OC_Ub3Bjvsp6QZfBKwc-lKr73u1073SYfTZrDhnJw0ug148TPn5PXu9mX5kK6e7x-X1So1mYApNTnHGgyVsrRUCCMElXWDVjQ0l5yWRSMAhUBd1si5tGAyFLRgOUNWaFtnc3J16B398LbDMKnOBYNtq3scdkEJAaWAIqfRef2nk5bxHotMWLTyg9X4IQSPjRq967T_UBTUHqraql-oag9VQRSTMVkdkhh_fnfoVTAOIy_rPJpJ2cH92_EN0uqEBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671621872</pqid></control><display><type>article</type><title>A Monge-Ampère enhancement for semi-Lagrangian methods</title><source>Elsevier ScienceDirect Journals</source><creator>Cossette, Jean-François ; Smolarkiewicz, Piotr K.</creator><creatorcontrib>Cossette, Jean-François ; Smolarkiewicz, Piotr K.</creatorcontrib><description>Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2011.01.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cellular ; Computational fluid dynamics ; Computer simulation ; Fluid flow ; Incompressible turbulent flows ; Mathematical models ; Monge-Ampère equations ; Non-linear elliptic equations ; Semi-Lagrangian approximations ; Trajectories ; Turbulence ; Turbulent flow</subject><ispartof>Computers &amp; fluids, 2011-07, Vol.46 (1), p.180-185</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c47eb0c1996d188c8819bfed8f1497165f80e88ea6be779d0c3e815242e25adb3</citedby><cites>FETCH-LOGICAL-c380t-c47eb0c1996d188c8819bfed8f1497165f80e88ea6be779d0c3e815242e25adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793011000363$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Cossette, Jean-François</creatorcontrib><creatorcontrib>Smolarkiewicz, Piotr K.</creatorcontrib><title>A Monge-Ampère enhancement for semi-Lagrangian methods</title><title>Computers &amp; fluids</title><description>Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial.</description><subject>Cellular</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Incompressible turbulent flows</subject><subject>Mathematical models</subject><subject>Monge-Ampère equations</subject><subject>Non-linear elliptic equations</subject><subject>Semi-Lagrangian approximations</subject><subject>Trajectories</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKvP4N7pzdZJ9ifJ5VL8g4o3eh2yyWybsn8mW8E38j18MVMqXiocGAbOOcN8hFxSWFCg5c12YYZubNqdswsGlC4giskjMqOCyxR4zo_JDCAvUi4zOCVnIWwh7hnLZ4RXydPQrzGtuvHr02OC_Ub3Bjvsp6QZfBKwc-lKr73u1073SYfTZrDhnJw0ug148TPn5PXu9mX5kK6e7x-X1So1mYApNTnHGgyVsrRUCCMElXWDVjQ0l5yWRSMAhUBd1si5tGAyFLRgOUNWaFtnc3J16B398LbDMKnOBYNtq3scdkEJAaWAIqfRef2nk5bxHotMWLTyg9X4IQSPjRq967T_UBTUHqraql-oag9VQRSTMVkdkhh_fnfoVTAOIy_rPJpJ2cH92_EN0uqEBQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Cossette, Jean-François</creator><creator>Smolarkiewicz, Piotr K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110701</creationdate><title>A Monge-Ampère enhancement for semi-Lagrangian methods</title><author>Cossette, Jean-François ; Smolarkiewicz, Piotr K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c47eb0c1996d188c8819bfed8f1497165f80e88ea6be779d0c3e815242e25adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cellular</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Incompressible turbulent flows</topic><topic>Mathematical models</topic><topic>Monge-Ampère equations</topic><topic>Non-linear elliptic equations</topic><topic>Semi-Lagrangian approximations</topic><topic>Trajectories</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cossette, Jean-François</creatorcontrib><creatorcontrib>Smolarkiewicz, Piotr K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cossette, Jean-François</au><au>Smolarkiewicz, Piotr K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monge-Ampère enhancement for semi-Lagrangian methods</atitle><jtitle>Computers &amp; fluids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>46</volume><issue>1</issue><spage>180</spage><epage>185</epage><pages>180-185</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2011.01.029</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2011-07, Vol.46 (1), p.180-185
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_880680541
source Elsevier ScienceDirect Journals
subjects Cellular
Computational fluid dynamics
Computer simulation
Fluid flow
Incompressible turbulent flows
Mathematical models
Monge-Ampère equations
Non-linear elliptic equations
Semi-Lagrangian approximations
Trajectories
Turbulence
Turbulent flow
title A Monge-Ampère enhancement for semi-Lagrangian methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monge-Amp%C3%A8re%20enhancement%20for%20semi-Lagrangian%20methods&rft.jtitle=Computers%20&%20fluids&rft.au=Cossette,%20Jean-Fran%C3%A7ois&rft.date=2011-07-01&rft.volume=46&rft.issue=1&rft.spage=180&rft.epage=185&rft.pages=180-185&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2011.01.029&rft_dat=%3Cproquest_cross%3E1671621872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671621872&rft_id=info:pmid/&rft_els_id=S0045793011000363&rfr_iscdi=true