A Monge-Ampère enhancement for semi-Lagrangian methods
Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2011-07, Vol.46 (1), p.180-185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial. |
---|---|
ISSN: | 0045-7930 1879-0747 |
DOI: | 10.1016/j.compfluid.2011.01.029 |