A Monge-Ampère enhancement for semi-Lagrangian methods

Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-07, Vol.46 (1), p.180-185
Hauptverfasser: Cossette, Jean-François, Smolarkiewicz, Piotr K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampère (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial.
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2011.01.029