Photoluminescence from silicon nanoparticles embedded in ammonium silicon hexafluoride
Silicon (Si) nanoparticles (NPs) were synthesized by transforming a Si wafer surface to ammonium silicon hexafluoride (ASH) or (NH(4))(2)SiF(6) under acid vapor treatment. Si-NPs which were found to be embedded within the polycrystalline (ASH) layer exhibit a strong green-orange photoluminescence (P...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2010-10, Vol.21 (43), p.435701-435701 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicon (Si) nanoparticles (NPs) were synthesized by transforming a Si wafer surface to ammonium silicon hexafluoride (ASH) or (NH(4))(2)SiF(6) under acid vapor treatment. Si-NPs which were found to be embedded within the polycrystalline (ASH) layer exhibit a strong green-orange photoluminescence (PL). Differential PL measurements revealed a major double component spectrum consisting of a broad band associated with the ASH-Si wafer interfacial porous oxide layer and a high energy band attributable to Si-NPs embedded in the ASH. The origin of the latter emission can be explained in terms of quantum/spatial confinement effects probably mediated by oxygen related defects in or around Si-NPs. Although Si-NPs are derived from the interface they are much smaller in size than those embedded within the interfacial porous oxide layer (SiO(x), x > 1.5). Transmission electron microscopy (TEM) combined with Raman scattering and Fourier transformed infrared (FTIR) analysis confirmed the presence of Si-NP and Si-O bondings pointing to the role of oxygen related defects in a porous/amorphous structure. The presence of oxygen of up to 4.5 at.% in the (NH(4))(2)SiF(6) layer was confirmed by energy dispersive spectroscopy (EDS) analysis. |
---|---|
ISSN: | 0957-4484 1361-6528 1361-6528 |
DOI: | 10.1088/0957-4484/21/43/435701 |