Composite Reliability Assessment Based on Monte Carlo Simulation and Artificial Neural Networks

This paper presents a new methodology for reliability evaluation of composite generation and transmission systems, based on nonsequential Monte Carlo simulation (MCS) and artificial neural network (ANN) concepts. ANN techniques are used to classify the operating states during the Monte Carlo samplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2007-08, Vol.22 (3), p.1202-1209
Hauptverfasser: Leite da Silva, A.M., Chaves de Resende, L., da Fonseca Manso, L.A., Miranda, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new methodology for reliability evaluation of composite generation and transmission systems, based on nonsequential Monte Carlo simulation (MCS) and artificial neural network (ANN) concepts. ANN techniques are used to classify the operating states during the Monte Carlo sampling. A polynomial network, named group method data handling (GMDH), is used, and the states analyzed during the beginning of the simulation process are adequately selected as input data for training and test sets. Based on this procedure, a great number of success states are classified by a simple polynomial function, given by the ANN model, providing significant reductions in the computational cost. Moreover, all types of composite reliability indices (i.e., loss of load probability, frequency, duration, and energy/power not supplied) can be assessed not only for the overall system but also for areas and buses. The proposed methodology is applied to the IEEE Reliability Test System (IEEE-RTS), to the IEEE-RTS 96, and to a configuration of the Brazilian South-Southeastern System.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2007.901302